271 research outputs found

    User needs, benefits and integration of robotic systems in a space station laboratory

    Get PDF
    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established

    Magnetic phases of the mixed-spin J1−J2J_1-J_2 Heisenberg model on a square lattice

    Full text link
    We study the zero-temperature phase diagram and the low-energy excitations of a mixed-spin (S1>S2S_1>S_2) J1−J2J_1-J_2 Heisenberg model defined on a square lattice by using a spin-wave analysis, the coupled cluster method, and the Lanczos exact-diagonalization technique. As a function of the frustration parameter J2/J1J_2/J_1 (>0 >0), the phase diagram exhibits a quantized ferrimagnetic phase, a canted spin phase, and a mixed-spin collinear phase. The presented results point towards a strong disordering effect of the frustration and quantum spin fluctuations in the vicinity of the classical spin-flop transition. In the extreme quantum system (S1,S2)=(1,1/2)(S_1,S_2)=(1,{1/2}), we find indications of a new quantum spin state in the region 0.46<J2/J1<0.50.46< J_2/J_1<0.5Comment: 5 PRB pages, 7 figure

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    Exactly solvable two-dimensional quantum spin models

    Full text link
    A method is proposed for constructing an exact ground-state wave function of a two-dimensional model with spin 1/2. The basis of the method is to represent the wave function by a product of fourth-rank spinors associated with the sites of a lattice and the metric spinors corresponding to bonds between nearest neighbor sites. The function so constructed is an exact wave function of a 14-parameter model. The special case of this model depending on one parameter is analyzed in detail. The ground state is always a nondegenerate singlet, and the spin correlation functions decay exponentially with distance. The method can be generalized for models with spin 1/2 to other types of lattices.Comment: 15 pages, 9 figures, Revte

    Metamagnetism in the XXZ model with next-to-nearest-neighbor coupling

    Full text link
    We investigate groundstate energies and magnetization curves in the one dimensional XXZ-model with next to nearest neighbour coupling α>0\alpha>0 and anisotropy Δ\Delta (−1≤Δ≤1-1 \le \Delta \le 1) at T=0. In between the familiar ferro- and antiferromagnetic phase we find a transition region -- called metamagnetic phase -- where the magnetization curve is discontinuous at a critical field Bc(α,Δ)B_c(\alpha,\Delta).Comment: LaTeX file (text) + 5 PS files (5 figures

    An Improved Initialization Procedure for the Density-Matrix Renormalization Group

    Full text link
    We propose an initialization procedure for the density-matrix renormalization group (DMRG): {\it the recursive sweep method}. In a conventional DMRG calculation, the infinite-algorithm, where two new sites are added to the system at each step, has been used to reach the target system size. We then need to obtain the ground state for a different system size for every site addition, so 1) it is difficult to supply a good initial vector for the numerical diagonalization for the ground state, and 2) when the system reduced to a 1D system consists of an array of nonequivalent sites as in ladders or Hubbard-Holstein model, special care has to be taken. Our procedure, which we call the {\it recursive sweep method}, provides a solution to these problems and in fact provides a faster algorithm for the Hubbard model as well as more complicated ones such as the Hubbard-Holstein model.Comment: 4 pages, 4 figures, submitted to JPS

    Exact ground states for a class of one-dimensional frustrated quantum spin models

    Full text link
    We have found the exact ground state for two frustrated quantum spin-1/2 models on a linear chain. The first model describes ferromagnet- antiferromagnet transition point. The singlet state at this point has double-spiral ordering. The second model is equivalent to special case of the spin-1/2 ladder. It has non-degenerate singlet ground state with exponentially decaying spin correlations and there is an energy gap. The exact ground state wave function of these models is presented in a special recurrent form and recurrence technics of expectation value calculations is developed.Comment: 16 pages, 3 figures, RevTe

    Influence of quantum fluctuations on zero-temperature phase transitions between collinear and noncollinear states in frustrated spin systems

    Full text link
    We study a square-lattice spin-half Heisenberg model where frustration is introduced by competing nearest-neighbor bonds of different signs. We discuss the influence of quantum fluctuations on the nature of the zero-temperature phase transitions from phases with collinear magnetic order at small frustration to phases with noncollinear spiral order at large frustration. We use the coupled cluster method (CCM) for high orders of approximation (up to LSUB6) and the exact diagonalization of finite systems (up to 32 sites) to calculate ground-state properties. The role of quantum fluctuations is examined by comparing the ferromagnetic-spiral and the antiferromagnetic-spiral transition within the same model. We find clear evidence that quantum fluctuations prefer collinear order and that they may favour a first order transition instead of a second order transition in case of no quantum fluctuations.Comment: 6 pages, 6 Postscipt figures; Accepted for publication in Phys. Rev.

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    Quantum Magnetization Plateau in Spin-1 Triangular-Lattice Antiferromagnet Ba3_3NiSb2_2O9_9

    Full text link
    We report the results of magnetization and specific heat measurements on Ba3_3NiSb2_2O9_9, which is a quasi-two-dimensional spin-1 triangular-lattice antiferromagnet. We observed a nonclassical magnetization plateau at one-third of the saturation magnetization that is driven by spin frustration and quantum fluctuation. Exact diagonalization for a 21-site rhombic cluster was performed to analyze the magnetization process. Experimental and calculated results agree well.Comment: published in Journal of the Physical Society of Japan 80 (2011) 09370
    • …
    corecore